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A conservation law for internal gravity waves 
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The scaled vorticity S2/N and strain V [  associated with internal waves in a weak 
density gradient of arbitrary depth dependence together comprise a quantity that 
is conserved in the usual linearized approximation. This quantity 1 is the volume 
integral of the dimensionless density DI = *[Q2/Nz + (V[)7. For progressive 
waves the ‘kinetic’ and ‘potential’ parts are equal, and in the short-wavelength 
limit the density Dx and flux FI are related by the ordinary group velocity: 
F ,  = DIcg. The properties of DI suggest that it may be a useful measure of local 
internal-wave saturation. 

1. Introduction 

obey a conservation law 

Energy is a well-known invariant in the absence of viscosity, and for small- 
amplitude internal gravity waves its density and flux are, in terms of the fluid 
density p, velocity u and vertical displacement [, 

A dynamical quantity is a local invariant if its density D and associated flux F 

aD/at+V.F = 0. (1.1) 

I& = + ~ ( u ~ + N ~ [ ~ ) ,  FE = p’u, (1% (1.3) 

where p’ is the fluctuating part of the pressure and N ( z )  is the Brunt-VaisalB 
frequency. 

The purpose of this communication is to identify another invariant 1 for inter- 
nal waves, associated not with the quantities [ and u themselves, but with their 
spatial gradients. The density of this quantity is dimensionless, and is composed 
of a kinetic part involving the wave vorticity GI = V x u  and a kinematic, 
‘potential’ part involving the strain vector V [ :  

DI = +[Q2/N2 + (V[)2]. (1.4) 

Under the Boussinesq approximation, and in the limit of small amplitude, this 
quantity will be shown to obey the conservation law 

aDI/at + v. F ,  = 0, (1.5) 

where the associated flux is defined by 

14 
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It is worth emphasizing that the law holds good for arbitrary N(z ) ,  subject only 
to the overall Boussinesq constraint that the total change in inertial density over 
the fluid column be small. 

This conservation law is weaker than that for energy, since it breaks down for 
general nonlinear flow; however, when the linearized approximation is valid, the 
behaviour of I is analogous to that of energy in several respects. The kinetic and 
potential parts of I are equal for progressive waves, 

and are therefore global invariants individually. In  the short-wavelength limit, 
the local kinetic and potential densities are equal and the flux is equal to the 
density multiplied by the ordinary dispersive group velocity, i.e. 

signifying that I propagates locally with the wave group. 

2. Derivation 

fluid can be written as 
(2.1) 

where p’ and pi are the instantaneous departures of p and p from their values at 
hydrostatic equilibrium, po(z) and po(z). The buoyancy force, in the direction of 
the unit vertical vector 2, has the value 

The linearized momentum equation for an incompressible inhomogeneous 

Po aqat + vpi  -t 2gpi= 0, 

gC(dPoP4 -= -Po N 2 ( d 5  (2.2) 

when the fluid a t  depth z has been displaced a small distance C; above its equili- 
brium level. I n  the Boussinesq approximation the inertial density of the fluid is 
assumed constant, so that the curl of (2.1) divided by po is 

aapt - ~ z ( z ) %  x vg = 0. (2.3) 

This is the linearized vorticity equation for internal waves: it signifies that a 
sloping density surface generates horizontal vorticity whose local effect is to 
rotate the density surface back towards the horizontal. 

The scalar product of this equation with 8 is, upon division by N2(z)  and 
reordering of factors, 

With the aid of the vector identity 

a( 8 !22/N2)/at + (2 x 8) . vg = 0. 

2 x 8 = z x (V x u) = vu,- aupz 

(2 x 8) . vg = vu,. vg- (aupz). vg = 4 a[(vCyyat - v.  ([sup), 

(2.4) 

we can write the second term above as 

the last step in virtue of zc, = ag/.lat and V .  (au/az) = a(V.u)/az = 0. With this 
substitution, the equation becomes 

(2.6) a[Q2/N2 + (VLJz]/at + V .  ( - [au/a~) = 0, 
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completing the demonstration of the conservation theorem (1.4)-(1.6).  Note that 
at any rigid boundary the normal component of flux must vanish, so that I is 
constant in any volume enclosed by rigid boundaries. 

3. Relation between the kinetic and potential terms 
Individually, the kinetic and potential parts of the invariant, 

behave analogously to kinetic and potential energy. They are equal (and con- 
stant) in a field of progressive waves, whereas in a field of standing waves, the 
quantity I oscillates between the kinetic and potential forms twice each wave 
cycle, so that In = Is on average. The local densities iQz /Nz  and &V[)2 depend on 
the details of the internal-wave field and are not necessarily equal; they differ by 
a quantity that vanishes in the short-wavelength limit. 

To demonstrate these properties, we shall find i t  convenient to expand the 
scaled vorticity field 8 / N  itself in dynamical eigenfunctions. The complete 
equations of motion consist of the vorticity equation (2 .3 )  and the kinematic 
relation 

a q a t + f . v x +  = 0,  ( 3 . 2 )  

written here in terms of the vector stream function +, defined by 

v .+ = 0,  o x +  = -u 
and related to 8 by 

v2+ = 8. 

For a field component having horizontal periodicity exp (ik . x), we then have 

V2+k = (az/az2- k2) +k = 8 k ,  (3.5) 

(3 .6 )  

where Gk is the symmetric Green’s function for V 2  = a2/i3z2 - k2 satisfying Gk = 0 
at the upper and lower fluid boundaries. In  terms of these components, the 
equations of motion (2 .3 )  and (3 .2 )  read 

aslk/at - i ~ 2 ( 2  x k)  ck = 0,  ( 3 . 7 a )  

v - 2 8 k  = - 1 Gk(Z,Z‘)  8 k ( z ’ )  dz’ = +k ,  

+ i(e X k )  . v-28k = 0. (3 .7b )  

The first of these equations indicates that 8 k  is horizontal and transverse to k. 
If we put 8 k  = (2 x k/k) f i k ,  we have for the magnitude f i k  

a2( Q2,/N)/at2 f k2rk(  Q k / N )  = 0,  (3 .8 )  

in which f i k  has been divided by N(z)  to symmetrize the integral operator 
r k  = - NV-2N, defined by the kernel 

r k ( 2 ,  2’)  = N ( Z ) G k ( 2 ,  Z’)N(Z’). 

The solutions to (3 .8 )  are of the form 

(3.9) 
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where the f k m  are eigenfunctions of the integral equation 

rk f k m  = cykm. (3.10) 

If we further assume that N ( z )  > 0 everywhere, then the fi, are orthogonal and 
complete (Courant & Hilbert 1965, pp. 351-362), 

J f k m  fkm'dx = 8mm'; (3.11) 

for simplicity we shall employ periodic boundary conditions in the horizontal, and 
define the normalization above over the appropriate rectangular volume. The 
scaled vorticity associated with an arbitrary field of internal waves can now be 
expanded as 

Q/N = Re I; ekm(& x k/k)exp(ik.~-i+~t)f~(x), (3.12) 

where by convention w = ck is positive, so that the phase velocity c is in the 
direction k. The corresponding expression for the displacement field is 

km 

(3.13) 

where the functions g are related to the functionsf through (3.7): 

f k m  = -&Ngkm, gkm = &V-'Nfkm. (3.14a,b) 

The displacement eigenfunctions g are recognizable as solutions to the more 
familiar differential equation 

(v' + C-'N') gkm = 0 (3.15) 

(Phillips 1966, p. 162). This equation can be obtained directly by the application 
of V2 to (3.14b) and the elimination of fkm. 

We can now evaluate the kinetic and potential densities i Q 2 / N 2  and i(Vc)' in 
terms of the complex scalar modal amplitudes ekm. Let 

€km = Iekml exp ($$km), 
and abbreviate 

The squared expansion (3.12) for Q/N then becomes 

6 = k.x-+mt+$km. (3.16) 

iQ2/N2 ix( 1 elf)km( 1 Elf)wmt &. &' COB 6 cos 8'2 (3.17) 

where fr = k/k. With the aid of the identity 

(VC)' = - CV'C + av2cz 

and (3.14) and (3.15), yielding VzC in terms of thefkm, we obtain the potential 
density as 

i(vg)' = *x( (3.18) 

Integration of (3.17) and (3.18) over volume causes those terms for which either 
k =t= & k or m + m' to vanish, so that 

(3.19 a)  

= ' + ax I ekme-kml co8 8", (3.19b) 

cf )h( 18 I c-'f)k*m, cos 6 cos 6' + v. {avc2)). 

In = I e h l  ' - ix  Iekme-km I co8 6"s 

6" = $km $-km- 2ymt-  
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Note that the time-dependent parts of 4) and I ,  are equal and opposite, hence the 
sum is constant, as expected: 

(3.20) 

The time-dependent terms above represent oscillations between the kinetic and 
potential forms of I due to standing-wave components of the field. For purely 
progressive waves, In = Is. 

For a random stationary field of internal waves, in which the phases e can be 
regarded as mutually uncorrelated, the mean kinetic and potential densities con- 
sist onlyofthe termswith k = k'inexpressions (3.17) and (3.18), so that the mean 
densities differ by 

i (Vc)2  - &Q2/N2 = &d2(F)/dz2. (3.21) 

The averages above can be defined over field ensembles, or over time for a 
particular realization of the field. In  a field made up of many vertical wavelengths, 
it is possible for the scale over whichp varies appreciably to be large compared 
with the contributing wave scales. In  such a case (exemplified by internal waves 
in the deep ocean thermocline) the mean kinetic and potential densities are 
approximately equal. In  the short-wavelength limit they become identical, as is 
shown below. 

- -  

4. Short-wavelength approximation 
A wave packet with local three-dimensional wavenumber k can be defined by 

6 = Re (coeeie), S2/N = Re(e,,eie), (4.1) 

with B(x, t )  such that 
k = ve, = - aeiat. 

When the variation of N ,  c0, and e0 over the characteristic scales k-l and w-1 is 
small, the equations of motion are equivalent to 

and 

e0 = - (2 x k) U-~NC~ 

~2 = N2(!? x k)2/k2, 

the latter being the familiar dispersion relation for internal waves in a slowly 
varying gradient (Phillips 1966, p. 174). We then have 

&Q2/Ng = &k"$ cos2 8, 

and 4(Vc)2 = ik2c68 sin28, 

so that the density Dz is locally uniform: 
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The vector FI is perpendicular to k, i.e. in the plane of the surfaces 0 = constant, 
and perpendicular to S2. Consequently its divergence vanishes to first order in 
the short-wavelength approximation, as does aDI/at. 

We can recognize in FI a factor equal to the ordinary group velocity defined by 
the dispersion relation (4.4), 

cQ 5 V,w(k, X) = (N2/2~)Vk[(2 x k)'/k2] 

= -k-4~-1N2 (k.5) k x (2 x k), (4.9) 

so that FI = ( ~ + C O S ~ ~ ) D , C , .  (4.10) 

Averaged over a half-cycle of local phase, the flux is 

FI = W g ,  (4.11) 

signifying that the quantity I propagates with the group. The conservation law, 
written as a time derivative of DI along the group trajectory, is then 

[a/at+c,.V]DI = -DIV.c,. (4.12) 

5. Relation to energy 
The normal-mode expansion of the total energy, 

E = $ J p o ( U 2 + N 2 p ) d X ,  

from (1. 1), is straightforward in the Boussinesq approximation, when po(z )  is 
replaced by the constant value po; integration by parts yields 

u2+-Q.+ = -S2v-=a, 
which, together with the relations (3.14), allows the integral above to be put into 
the form 

= 3 P o ~ I ~ m l 2 G m .  (5.2) 

Comparing this expression with (3.20), we see that the ratio of E to I in a given 
modal component is po c2. Since phase velocity is a diminishing function of k and 
m, the amount of energy associated with a given amount of scaled vorticity or 
strain is a rapidly decreasing function of total wavenumber, as one would expect. 

In  nonlinear flow, the modes are coupled and the amplitudes.€,, are no longer 
constant. Energy is conserved nevertheless, so that the sum (5.2) remains 
constant. This suggests that 1 is in general not constant under nonlinear energy 
exchange, and that no simple generalization of the conservation law to nonlinear 
flow exists. 

6. Implications 
The apparent regularity in the energy spectra of ocean internal waves is widely 

regarded as evidence that these waves are 'saturated', i.e. limited in amplitude 
either by sporadic breaking or by nonlinear energy transfer among the spectral 
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components (Garrett & Munk 1975, 1972). In  the analogous equilibrium of 
surface waves, a specific dimensionless quantity can be identified as defining the 
saturated state: the surface slope, which for all wavelengths determines the 
degree of nonlinearity and in terms of which the saturated spectrum has a univer- 
sal, dimensionless form (Phillips 1966, pp. 109-119). 

A quantity that plays the same role for internal waves is not so easy to identify 
because the governing nonlinearities are less well understood for a random wave 
field, and because the medium has a troublesome third dimension in which the 
stratification is inhomogeneous. A possible candidate is the density DI, which is 
itself a natural measure of the local flow nonlinearity. Because of the average 
equality (Vc)2 z Q2/N2, the density DI = +[Q2/N2 + (Vc)2] is numerically equal 
both to (Vc)2 and to Q2/N2. A value of Dz N 1 implies that either the isopycnal 
slope ac/ax, y or the dilation a</az is appreciable, in other words, that the stratified 
medium is undergoing significant local distortion. Thus the connexion between 
Dz and the nonlinear regime of the flow equations is direct; what about the 
connexion with known regimes of instability? In  this respect the relation derived 
in this paper between strain and scaled vorticity is noteworthy, because the 
quantity Q2/N2 has been shown to have a direct bearing on internal-wave 
stability in the limit of long horizontal wavelength. In  this limit the slopes are 
small, the flow nearly parallel and the quantity Q2/N2 becomes equal to the 
inverse Richardson number : 

DI+Ri-'= ~ - 2 [ ( a z ~ , / a q +  (aU,/az)2], k + o .  (6.1) 

In  parallel flow Ri-l is the appropriate measure of instability: theoretically, 
Ri-' < 4 assures stability (Miles 1961), and conversely, measured values of Ri-l 
appear not to exceed 4 in ocean internal waves (Sanford 1975). 

The quantity DI is therefore a plausible generalization of Ri-1 as an absolute 
measure of local wave excitation for a multimodal field. The significance of the 
linearized conservation theorem is that Dz is well behaved as a function of the 
vertical co-ordinate regardless of the stratification profile N ( z )  and represents the 
partitioning over space of an almost-conserved quantity I. I n  turn, the spatial 
partitioning is uniquely related to the partitioning of I (and therefore of energy) 
among the modes )ckrnl2. 

As pointed out in $5, the conservation law fails in the presence of nonlinear 
energy exchange among the modes. This property might be turned to advantage, 
in that the degree of non-conservation of 1 could furnish an empirical measure 
of nonlinear exchange rates. Equation (3.20) can be rewritten in terms of the 
modal energies Ekm defined implicitly in (5.2) as 

I = p o l 2  EkrncZ. (6.2) 

If we imagine a field, free of external energy sources for simplicity, in which energy 
is cascading from low to high k and m, in the direction of decreasing c, we infer 
from (6.2) that I is increasing. The conservation law must accordingly be modified 
to read 

8Dz/at+V.FI = n - d ,  (6.3) 
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where ?z is a positive volume source of I proportional to the energy cascade rate 
and where d is a volume sink representing the effect of dissipative energy loss at  
the highest wavenumbers. The number Diln' can be used to define a local non- 
linear interaction rate; since both the mean density and the flux of I are simple 
combinations of measurable local flow quantities, one could experimentally 
obtain lower-bound estimates of these rates, in the form Bi'(n-d). 

This work was supported by the Defense Advanced Research Projects Agency 
(DARPA) and monitored by the Office of Naval Research under Contract 
NO00 14-7 34-0 105. 

REFERENCES 

COURANT, R. & ~ E R T ,  D. 1965 Method.9 of Mathematical Physics. Interscience. 
G A F ~ ~ T T ,  C. & MUNK, W. 1972 Oceanic mixing by breaking internal waves. Deep-sea 

GARRETT, C. & MUNK, W. 1976 Space-time scales of internal waves: a progress report. 

MILES, J. W. 1961 On the stability of heterogeneous shear flows. J .  Fluid Mech. 10, 491. 
PHILLIPS, 0. M. 1966 The Dynantic.9 of the Upper Ocean. Cambridge University Press. 
SWORD, T. B. 1976 Observations of the vertical structure of internal waves. J .  Qeophya. 

Rea. 19, 823. 

J .  Qeophya. RW. 80, 291. 

Rea. 80, 3861. 


